Dipl.-Ing. Marcel Lang

Stahl-Riegelanschluss nach EC 3

Leistungsbeschreibung des BauStatik-Moduls S682.de Stahl-Riegelanschluss, Komponentenmethode

Geschraubte T-Stöße werden im Stahlbau häufig als Riegelanschlüsse an durchlaufende Stützen oder Stützenanschlüsse an durchlaufende Riegel ausgeführt. Das Modul S682.de weist solche Anschlüsse auf Grundlage der Komponentenmethode gemäß DIN EN 1993-1-8 nach. Die Ausführung geneigter Riegel ist ebenso möglich, wie Verstärkungen durch Vouten, Stegbleche, Steifen oder Futterbleche.

Allgemein

Das Modul S682.de kann für den Nachweis bzw. die Bemessung von T-Stößen mittels Komponentenmethode nach DIN EN 1993-1-8 [1] angewendet werden. Wie schon in der Leistungsbeschreibung für das Modul S680.de [4] beschrieben wurde, ist der Vorteil der Komponentenmethode, neben der grundlegenden Ermittlung der Druck- und Zugtragfähigkeit des gewählten Anschlusses, die zusätzliche Charakterisierung auf Grundlage der Nachgiebigkeit. Dadurch wird das Verformungsverhalten des Anschlusses bei der Auslegung und Nachweisführung berücksichtigt. Der T-Stoß kann unter wählbarem Winkel als Schraubanschluss ausgeführt werden, um Dachneigungen abbilden zu können. Der angeschlossene Träger kann als seitlicher oder aufgelegter Anschluss, mit oder ohne Voute, ausgeführt werden. Zusätzlich kann mit Steifen, Stegblech oder Futterplatte optional verstärkt werden, um eine möglichst große Flexibilität in der Auslegung des Anschlusses zu gewährleisten. Neben den Nachweisen nach Komponentenmethode, werden Spannungsnachweise der Anschlussbauteile sowie Schrauben- und Schweißnahtnachweise geführt.

System

Als Positionstypen stehen der seitliche Trägeranschluss und der aufgelegte Träger zur Auswahl. Der Träger wird mittels angeschweißter Stirnplatte an bzw. auf eine Stütze geschraubt.

Vorbern	erkung	System	Material/Querschnitt	Verbindungsmittel	
Belastungen		Nachweis	e Ausgabe	Erläuterung	
Positions	typ			-	
Тур	Seitlic	Seitlich angeschlossener T-Stoß			
Riegelnei	igung			Ξ	
δ		5.00 "	Riegelneigung		

Bild 1. Eingabekapitel "System"

Material/Querschnitt

Im Kapitel "Material/Querschnitt" werden alle einzelnen "Komponenten" des Anschlusses definiert. Die Stütze und der Anschlussträger (Riegel) können als I-Profile oder als Schweißprofile ausgeführt werden. Alle zu wählenden Bauteile wie Stütze, Riegel, Aussteifungselemente (Stegblech oder Steifen), Voute, Stirn- und/oder Futterplatte werden in eigenen Abschnitten vorgegeben. Dort können Stahlsorte, Querschnitte, geometrische Abmessungen der Anschlussbauteile sowie Schweißnahtdicken gewählt werden. Neben der automatischen programmseitigen Bemessung für einen Teil der Parameter steht für alle Parameter eine manuelle Vorgabe zur Verfügung, um auch Anschlüsse im Bestand nachrechnen zu können.

Bei der Auswahl der Aussteifung können auch Stegbleche und Stegsteifen kombiniert werden. Bei Steifen und Stegblechen stehen die Optionen "einseitig" und "beidseitig" zur Wahl.

Alle Bezeichnungen und Indizes in Ein- und Ausgabe orientieren sich normgerecht an den Vorgaben des EC 3 [1].

Verbindungsmittel

Im Kapitel "Verbindungsmittel" werden Schrauben und Schraubenabstände vorgegeben. Grundlegend wird unterschieden zwischen 2- oder 4-reihiger Anordnung in vertikaler Richtung. In horizontaler Richtung können die Schrauben in bis zu zwei innenliegenden und einer außenliegenden Schraubenreihe angeordnet werden.

Insgesamt sind damit bis zu sechs horizontale Schraubenreihen möglich (siehe Bild 3). Die Schrauben- und Randabstände werden in vertikaler und horizontaler Anordnung vorgegeben. Sofern man auf eine automatische Anordnung zurückgreift, werden die Schrauben mit den jeweiligen Mindestabständen angeordnet.

Die Schrauben können sowohl als nicht vorgespannt (Kategorie A bzw. D) als auch als kontrolliert vorgespannt (Kategorie E) definiert werden.

Vorberne Belast	erkung ungen	System Nachweise	Material/Querschnitt Ausgabe	Verbindungsmittel Erläuterung		
Schraube	n			=		
Auswahl	der Schraub	en				
Bez	M20 10.9	(Rohe Schraub	oen)			
J/N	kontr	ollierte Vorspar	nung, Kategorie E			
Schraube	n vertikale A	nordnung		Ξ.		
Тур	💿 2-reihi	ger Anschluss				
	🔵 4-reihi	ger Anschluss				
Schraube	nreihe am o	beren Flansch				
ao	🔘 Minde	stwert				
	Manue	211				
a° N/N	✔ Weite	re innere Reihe	Abstand UK Uberfla	nsch		
P 1,o	🔵 Minde	stwert				
	Manue	211				
P 1,o	- Öußer	210 mm				
J/14	Auber	e Reine				
Schraube	nreihe am u	nteren Flansch				
аu	 Minde Manuel 	stwert JI				
а.,	• Manue	60 mm	Abstand UK Unterfla	unsch		
J/N	✔ Weite	re innere Reihe				
р 1, u	 Minde 	stwert				
	Manue	90				
Р 1, ш Ј/N	Äußer	re Reihe				
Schraube	Schrauben horizontale Anordnung 📃					
e 2	O Minde	stwert				
	Manue	20				
e 2		35 mm				

Bild 2. Schraubeneingabe

Bild 3. Schraubenbild und -abstände

Belastungen

Für die Belastungseingabe müssen die Schnittgrößen aus zwei der drei Schnitten am Anschlussknoten vorgegeben werden. Die dritte Schnittgrößenkomponente wird programmseitig automatisch aus dem Gleichgewicht am Knoten bestimmt. Der einzugebende Schnittgrößenvektor besteht jeweils aus den drei Anteilen M_{v} , V_z und N. Bei Bedarf können äußere am Knoten angreifende Lasten definiert werden (M_y , F_z , F_x), die ebenfalls in die Schnittgrößenberechnung in den entsprechenden Nachweisschnitten eingehen (Bild 4).

Wie in allen Lasteingaben steht auch hier die Einzelwertübernahme zur Verfügung.

Bild 4. Einzugebende Schnittgrößen für den Riegelanschluss

Nachweise

Das Modul ermittelt sowohl charakteristische als auch Bemessungsschnittgrößen, die tabellarisch und grafisch ausgegeben werden können. Die Nachweise nach der Komponentenmethode für I/H-Anschlüsse sind an die DIN EN 1993-1-8 [1] angelehnt.

Die Bemessungsgrundlagen wurden ausführlich in der Artikelserie von Dr. Kretz in vorangegangenen mb-news [5 - 7] erläutert.

Folgende Komponenten werden für den Nachweis des Anschlusses herangezogen:

- Schrauben auf Zug (Komponente 10)
- Stirnplatte sowie Stützenflansch auf Biegung (Komponente 5)
- Trägersteg mit Zug (Komponente 8)
- Stützensteg mit Querzug (Komponente 3)
- Stützensteg mit Schub (Komponente 1)
- Stützensteg mit Querdruck (Komponente 2)
- Trägerflansch und -steg/Voutenflansch mit Druck (Komponente 7)
- Trägersteg mit Querdruck (Komponente 2)

Die Komponenten für Verbindungsmittel:

- Lochleibung (Komponente 12)
- Abscheren (Komponente 11)
- Schweißnähte (Komponente 19)

Darüber hinaus werden weitere Schrauben- und Schweißnahtnachweise geführt (Zug + Abscheren, richtungsbezogenes Verfahren).

		Verweis auf Berechnungsverfahren				
	Komponente	Tragfähigkeit	Steifigkeits- koeffizient	Rotations- kapazität		
1	Stützenstegfeld mit Schubbeanspruchung V_{Ed} V_{Ed} V_{Ed}	6.2.6.1	6.3.2	6.4.2 6.4.3		
2	Stützensteg mit Quer- druckbeanspruchung	6.2.6.2	6.3.2	6.4.2 6.4.3		
3	Stützensteg mit Querzugbeanspruchung	6.2.6.3	6.3.2	6.4.2 6.4.3		
4	Stützenflansch mit Biegung	6.2.6.4	6.3.2	6.4.2 6.4.3		
5	Stirnblech mit Biege- beanspruchung	6.2.6.5	6.3.2	6.4.2		
6	Flanschwinkel mit Biegebeanspruchung	6.2.6.6	6.3.2	6.4.2		
7	Träger- oder Stützen- flansch und -steg mit Druckbeanspruchung $F_{c.Ed}$	6.2.6.7	6.3.2	-		
8	Trägersteg mit Zugbeanspruchung	6.2.6.8	6.3.2	-		
9	Blech mit Zug- oder Druckbeanspruchung $F_{t,Ed}$ O $F_{t,Ed}$ $F_{c,Ed}$ $F_{c,Ed}$	auf Zug: EN 1993-1-1 auf Druck: EN 1993-1-1	6.3.2	-		
10	Schrauben mit Zug- beanspruchung $F_{t,Ed}$	mit Stützenflansch: 6.2.6.4 mit Stirnblech: 6.2.6.5 mit Flanschwinkel: 6.2.6.6	6.3.2	6.4.2		

Bild 5. Grundkomponenten 1 - 10, Tab.6.1 DIN EN 1993-1-8 [1]

Ermittlung der effektiven Längen

Grundlage für die Ermittlung der Komponententragfähigkeiten, und auch der Anfangsrotationssteifigkeit, bilden die effektiven Längen (siehe Gl. (1) und (2)), die nach EC3 [1], Abs. 6.2.6.5 und 6.2.6.6/ Tab. 6.4 – 6.6 ermittelt werden. Die Tabelle unterscheidet grundlegend zwischen ausgesteiftem und nicht ausgesteiftem Anschluss. Weitere Kriterien bei der Ermittlung der effektiven Längen sind die Lagen der Schraubenreihen sowie das betrachtete Bauteil (siehe Bild 6).

effektive Länge für Modus 1:	
$l_{\rm eff,1} = l_{\rm eff,nc} \le l_{\rm eff,cp}$	(1)
effektive Länge für Modus 2:	

 $I_{eff,2} = I_{eff,nc}$ (2) mit $I_{eff,nc}$ eff. Länge für nicht kreisförmiges Muster $I_{eff,cp}$ eff. Länge für kreisförmiges Muster

Bild 6. Definition der Schraubenreihen für die eff. Längen [1, Bild 6.9]

Komponenten 10 und 5

Komponente 10 untersucht die Tragfähigkeit der Schraube auf Zug. Die Zugtragfähigkeit wird nach EC 3 [1] berechnet (Siehe Gl. (3)).

hagianigken der Schlädbe auf Zug.	
$F_{\rm t,Rd} = k_2 \cdot A_{\rm s} \cdot \frac{f_{\rm ub}}{\gamma_{\rm M2}}$	(3)
mit	
<i>k</i> ₂ Beiwert der Zugtragfähigkeit	
A _s Spannungsquerschnitt	

Bei der Komponente 5 werden zwei Bauteile untersucht. Die Stirnplatte und der Stützenflansch. Es werden für jede Schraubenreihe bzw. Schraubengruppe drei Versagensmodi betrachtet:

- Modus 1: vollständiges Fließen der Flansche: F_{T,1,Rd}
- Modus 2: Schraubenversagen mit Fließen der Flansche, es treten Abstützkräfte auf: F_{T,2,Rd}
- Modus 3: Schraubenversagen auf Zug, es treten keine Abstützkräfte auf: F_{T,3,Rd}

Die Biegetragfähigkeit $F_{t,ep,Rd}$ der Stirnplatte für die horizontale Schraubenreihe r entspricht dem Mindestwert der drei Versagensmöglichkeiten (siehe Glg. (4)).

$$F_{\rm t,ep,Rd} = \min\{F_{\rm T,1,Rd}; F_{\rm T,2,Rd}; F_{\rm T,3,Rd}\}$$
(4)

Komponente 8

Die Tragfähigkeit des Trägerstegs mit Zugbeanspruchung berechnet sich wie folgt:

$F_{t,wb,r,Rd} =$	$= \min\left\{\frac{b_{\text{eff},t,\text{wb}} \cdot t_{\text{wb}} \cdot f_{\text{y,wb}}}{\gamma_{\text{M0}}}; \frac{l_{\text{eff}} \cdot \sum a_{\text{w}} \cdot f_{1,\text{w,Rd}}}{\sqrt{2}}\right\} (5)$
mit	
b _{eff,t,wb}	effektive Breite des Trägersteges mit Zug; diese eff. Breite ist mit der wirksamen Länge des äquivalenten T-Stummelmodells gleichzusetzen
$l_{\rm eff}$	wirksame Länge des äquivalenten T-Stummel-Modells für die Stirnbleche
t _{wb}	Dicke des Trägerstegs
a _w	Nahtdicke der Stegnaht
$f_{\rm y,wb}$	Streckgrenze des Trägerstegs
<i>f</i> 1,w,Rd	Beanspruchbarkeit der Kehlnaht

Komponente 1-3

Die Komponenten 1-3 betreffen den Stützensteg auf Schub-, Druck- oder Zugbeanspruchung. Die Tragfähigkeiten lassen sich mit folgenden Gleichungen ermitteln:

Komponente 1 (Schubbeanspruchung):

$$V_{\rm wp,Rd} = \frac{0.9 \cdot f_{y,\rm wc} \cdot A_{\rm vc}}{\sqrt{3} \cdot \gamma_{\rm M0}} + V_{\rm wp,add,Rd}$$
(6)

Komponente 2 (Querdruck):

$$F_{\rm c,wc,Rd} = \frac{\omega \cdot k_{\rm wc} \cdot \rho \cdot b_{\rm eff,c,wc} \cdot t_{\rm wc} \cdot f_{\rm yc}}{\gamma_{\rm M1}}$$
(7)

Komponente 3 (Querzug):

$$F_{t,wc,Rd} = \frac{\omega \cdot b_{eff,t,wc} \cdot t_{wc} \cdot f_{yc}}{\gamma_{M0}}$$
(8)

mit

*A*_{vc} wirksame Schubfläche

V _{wp,add,Rd}	Erhöhungsanteil des Schubwiderstandes
-	aus den Steifen (wenn vorhanden)
ω	Abminderungsfaktor nach Tab. 3 [1, Abs.6.2.6.1]
k _{wc}	Stegbeiwert nach [1, Abs.6.2.6.2(2)]
ρ	Abminderungsbeiwert für Platten-
	beulen nach [1, Abs. 6.2.6.2(1)]
b _{eff,c,wc}	wirksame Breite des Stützenstegs für
- ,-, -	Querdruck nach [1, Abs. 6.2.6.2(1)]
t _{wc}	Stegdicke
$b_{\rm eff.t.wc}$	wirksame Breite des Stützenstegs
. , , ,	für Querzug [1, Abs. 6.2.6.3(1)]

Stützensteg mit Schub	Stützer	steg mi	t Schub (Ko	mponente 1)				
Abs. 6.2.6.1	ds,m [mm]	dw,c [mm]	tw,c [mm]	dw,c / tw,c	69ε	ηλ	Avc [cm ²]	Vwc,Rd [kN]
	243 ds.m:	208	11 Achsabstand z	18.91 wischen den Steifer	69 n	0.27	47.35	578.19
	Ave / Ave,s: Vwc,Rd:		wirksame Schu Schubtragfähij	ubfläche / wirksame gkeit des Stützenpro	e Schubfläc ofils	he inkl. Stej	gblech	
	Beansp	ruchun	g	Mpl,fc		Mpl,st	Vwp,add,Rd	Vwp,Rd
				[kNm]	[[kNm]	[kN]	[kN]
	Druck,	Kopfplat	tte	6.36		4.23	87.35	665.54
	Druck,	Stegstei	fe	6.36		5.20	95.36	673.55
	Mpi,fc: Mpi,st: Vwp.add,Rd; Vwp.Rd;	F F E	alast. Biegetragf alast. Biegetragf rweiterung der Sesamtschubtra	ähigkeit des Stützer ähigkeit der Steife Schubtragfähigkeit Igfähigkeit	nflanschs infolge Ste	lifen		
Stützensteg mit Querzug	Stützer	nsteg mi	t Querzug (Komponente	3)			
Abs. 6.2.6.3	Reihe		Avc	tw,c	be	ff,twc	ω	Ft,wc,Rd
			[cm ²]	[mm]	[1	mm]		[kN]
	R1		47.35	11.0	3	01.0	0.782	608.345
	R2		47.35	11.0	2	85.4	0.798	588.454
	R3		47.35	11.0	3	01.0	0.782	608.345
	R1+R2		47.35	11.0	2	84.8	0.798	587.729
	Ave / Ave.s: Ft,we,Rd:		wirksame Schu Zugtragfähigke	ubfläche / wirksame eit des Stützenstegs	Schubfläc	he inkl. Stej	gblech	

Bild 7. Ausgabebeispiel für die Tragfähigkeit der Komponenten 1 und 3

Komponente 7:

Trägerflansch und -steg mit Druckbeanspruchung Die Resultierende des Druckwiderstandes des Trägerflansches und der angrenzenden Druckzone im Trägersteg darf in der Flanschmittellinie angenommen werden. Die Tragfähigkeit auf Druck ermittelt sich nach Gl. (9) zu:

$$F_{\rm c,fb,Rd} = \frac{M_{\rm c,Rd}}{h - t_{\rm fb}} \tag{9}$$

mit

h	Höhe des angeschlossenen Trägers
M _{c,Rd}	Biegetragfähigkeit des Trägerquerschnitts
$t_{ m fb}$	Dicke des Tragerflansches

Riegelflansch/-steg mit Druck		Riegelflansch/-steg mit Druck (Komponente 7)							
Abs. 6.2.6.7	Abs. 6.2.6.7	Beanspruchu	ing Mc,Rd	Fc,bf,Rd	Fc,bw,Rd	Fc,bf+w,Rd	Fc,w,Rd	Fc,fb,Rd	
		[kNm]	[kN]	[kN]	[kN]	[kN]	[kN]		
		Druck oben	510.83	1069.3	232.22	1301.5	934.2	934.2	
		Druck unten	510.83	1069.3	232.22	1301.5	1062	1062	
		Mc,Rd;	pl. Momententrag	ähigkeit des Profil	es				
		Fc,bf,Rd;	Tragfähigkeit des F	iegelflanschs in Dr	uckzone				
		Fc,bw,Rdl	Fc,bw,Rd: Tragfähigkeit des Riegelstegs in Druckzone						
		Fc.bf+w,Rd: Tragfähigkeit des Riegels in Druckzone							
		Fcw.Rd: Tragfähigkeit der Schweißnähte in Druckzone							
		Fc,fb,Rd;	Maßgebende Trag	ähigkeit in Druckz	one				
		Beanspruchu	Ing	Fc,b,Rd		Fc,w,Rd		Fc,fb,Rd	
				[kN]		[kN]		[kN]	
		reiner Druck		4152.28		3066.06		3066.06	
		Fc,b,Rd:	Tragfähigkeit der Ges	amtquerschnittes	in Druckzone				
1		Fc,w,Rd:	Tragfähigkeit der Sch	weißnähte in Druc	kzone				
		Fc,fb,Rd;	Maßgebende Tragfäl	igkeit in Druckzon	e				

Bild 8. Ausgabebeispiel der Tragfähigkeit der Komponente 7

Komponenten 11 und 12:

Abscheren und Lochleibung der Schrauben

Unter Komponente 11 und 12 werden die üblichen Nachweise für Abscheren und Lochleibung nach EC 3 [1] geführt. Folgend sind die Gleichungen für die entsprechenden Nachweise erläutert:

Abscherwiderstand:	
$F_{\rm v,Rd} = \alpha_{\rm v} \cdot A \cdot \frac{f_{\rm ub}}{\gamma_{\rm M2}}$	(10)

Lochleibungswiderstand:

$$F_{b,Rd} = k_1 \cdot \alpha_b \cdot t \cdot \frac{a \cdot j_u}{\gamma_{M2}}$$
(11)
mit
$$\alpha_v \qquad Abminderungsbeiwert für AbscherenA \qquad Schraubenschaftquerschnittsfläche
$$f_{ub} \qquad Zugfestigkeit des Schraubenwerkstoffsk_1 \qquad Beiwert für Lochleibung$$$$

κ₁ Beiwert für Lochleibung
 α_b Abminderungsbeiwert für Lochleibung
 t Blechdicke des betrachteten Bauteils

d Schraubengewindedurchmesser

Darüber hinaus wird die Interaktion von Zug und Abscheren geprüft:

Zug + Abscheren:	
$\frac{F_{\mathrm{t,Ed}}}{1,4 F_{\mathrm{t,Rd}}} + \frac{F_{\mathrm{v,Ed}}}{F_{\mathrm{v,Rd}}} \le 1,0$	(12)

Komponente 19: Schweißnähte

Komponente 19 ist der Schweißnahtnachweis. Die Schweißnähte werden nach dem richtungsbezogenen Verfahren nachgewiesen und werden als Kehlnähte ausgeführt. Es werden alle Kraftrichtungen berücksichtigt und in Form der Vergleichsspannung nachgewiesen [1]:

$\sigma_{\rm V,w,Ed} =$	$\sqrt{\sigma_{\perp}^{2} + 3 \cdot (\tau_{\perp}^{2} + \tau_{\parallel}^{2})} \le f_{\text{vw,Rd}} \frac{f_{\text{u}}}{\beta_{\text{w}} \cdot \gamma_{\text{M2}}}$	(13)
mit		
$\sigma_{ m V,w,Ed}$	Bemessungswert der einwirkenden Vergleichsspannung der Schweißnaht	
$\sigma_{\!\perp}$	Hauptspannung senkrecht zur Nahtebene	
$ au_{\perp}$	Schubspannung senkrecht zur Nahtebene	
$ au_{ }$	Schubspannung parallel zur Nahtebene	
fvw.Rd	Bemessungswerte der Scherfestigkeit der M	Vaht
$f_{\rm H}$	Zugfestigkeit des schwächeren der	
<i>yu</i>	angeschlossenen Bauteile	
$\beta_{\rm w}$	Korrelationsbeiwert nach [1]	
Kanatuulu	tin anna führta CabunaiOra ähtar	

Konstruktiv ausgeführte Schweißnähte: $\sum_{w} a_{w} \ge t \cdot \frac{f_{y}}{f_{u}} \cdot \sqrt{2} \cdot \beta_{w} \cdot \frac{\gamma_{M2}}{\gamma_{M0}}$ (14) mit

a_w Nahtdicke Flansch bzw. Steg t Steg- bzw. Flanschdicke

Steifen

Werden Stegsteifen angeordnet, so werden zur Komponentenmethode zusätzlich Nachweise für Steifen und das Schubfeld (Komponente 9) geführt [3]. Nach dem Kommentar zur DIN EN 1993-1-8 [2, Abs. 6.2.6.1)]: "Werden Steifen zur Erhöhung der Schubbeanspruchung verwendet, müssen diese in Druck- und in der Zugzone angeordnet werden [...]".

Wenn Steifen gewählt werden, müssen je eine Druck- und eine Zugsteife angeordnet werden. Es wird ebenso in [2] ein Vollanschluss der Steifen gefordert. Das bedeutet eine umlaufende Schweißnaht ist erforderlich. Hintergrund ist der Übertrag zusätzlicher Schubkräfte durch den sich einstellenden Vierendeelmechanismus. Das Modul ermittelt Teilschnittgrößen in Schubfeld, Steifen und Schweißnähten. Die Steifen werden jeweils in Druck- und Zugzone nachgewiesen und auf Schub- und Vergleichsspannung geprüft. Die Schweißnähte werden nach dem richtungsbezogenen Verfahren bemessen.

Die Ergebnisse werden in einer übersichtlichen Grafik dargestellt, um Geometrie, Winkel und Schnittgrößen des Schubfeldes zuordnen zu können.

Bild 9. Schubfeld und Schnittgrößen

Momententragfähigkeit M_{j,Rd}

Beginnend mit der am weitesten vom Druckpunkt entfernt liegenden Schraubenreihe wird die Tragfähigkeit jeder Reihe, $F_{\rm tr,Rd}$, aus der Tragfähigkeit der schwächsten Komponente im Zugbereich bestimmt. Die jeweils zuletzt betrachtete Schraubenreihe kann aufgrund der Gleichgewichtsbedingungen auch durch die Tragfähigkeit der Komponenten im Druckbereich begrenzt sein.

Mit den Hebelarmen zu den einzelnen Schraubenreihen lässt sich die Biegetragfähigkeit $M_{i,Rd}$ wie folgt ermitteln:

$$\begin{split} M_{j,Rd} &= \sum_{r} h_{r} \cdot F_{tr,Rd} \end{split} \tag{15} \\ \text{mit} \\ h_{r} & \text{Abstand der Schraubenreihe } r \\ & \text{vom Druckpunkt} \\ F_{tr,Rd} & \text{wirksame Grenzzugkraft der} \\ & \text{Schraubenreihe } r \text{ auf Zug} \\ r & \text{Nummer der Schraubenreihe} \\ & \text{Die Nummerierung der Schraubenreihen} \\ & \text{beginnt mit der vom Druckpunkt am weitesten entfernt liegenden Schraubenreihe.} \end{split}$$

Anfangsrotationssteifigkeit S_{j,ini}

Die Rotationssteifigkeit eines Anschlusses kann anhand der Verformbarkeiten der einzelnen Grundkomponenten berechnet werden. Im Modul S682.de wird die Anfangsrotationssteifigkeit $S_{i,ini}$ nach DIN EN 1993-1-8, [1] ermittelt:

$$S_{j,\text{ini}} = \frac{E \cdot z_{eq}^2}{\frac{1}{k_{eq}}} \tag{16}$$

mit

$$\begin{array}{ll} z_{\rm eq} & \mbox{äquivalenter Hebelarm} \\ z_{\rm eq} = & \frac{\sum_{\rm r} k_{\rm eff,r} \cdot h_{\rm r}^2}{\sum_{\rm r} k_{\rm eff,r} \cdot h_{\rm r}} \\ k_{\rm eq} & \mbox{äquivalenter Steifigkeitskoeffizient} \\ k_{\rm eq} = & \frac{\sum_{\rm r} k_{\rm eff,r} \cdot h_{\rm r}}{z_{\rm eq}} \\ k_{\rm eff,r} & \mbox{effektiver Steifigkeitskoeffizient für die} \\ \mbox{Schraubenreihe } r \mbox{ unter Berücksichtigung der} \\ \mbox{Steifigkeitskoeffizienten } k_{\rm i} \mbox{ für die Komponenten } i_{\rm r} \mbox{ act oppinal componenten } i$$

Sofern die Normalkraft N_{Ed} im angeschlossenen Träger nicht mehr als 5 % der plastischen Beanspruchbarkeit $N_{pl,Rd}$ des Querschnitts beträgt, kann die Rotationssteifigkeit S_j eines Trägerstoßes ausreichend genau für ein Moment $M_{j,Ed}$, das kleiner als die Biegetragfähigkeit $M_{j,Rd}$ des Anschlusses ist, nach Gleichung (16) berechnet werden.

Eine Steifigkeitsermittlung für eine Normalkraft $N_{\rm Ed}$ im gestoßenen Träger mit mehr als 5 % der plastischen Beanspruchbarkeit $N_{\rm pl,Rd}$ des Trägerquerschnitts erfordert eine genaue Abbildung der einzelnen Komponenten über ein Gesamtfedermodell. Anhand der Anfangsrotationssteifigkeit kann das Verformungsverhalten des Anschlusses in der Tragwerksplanung berücksichtigt und damit eine wirtschaftliche Konstruktion erzielt werden.

Eigenschaften	Eigenschafte	n zu Festigkei	ten unc	l Steifig	keiten				
Steifigkeitskoeff.	Tragfähigkeit und Steifigkeitskoeffizienten der Schraubenreihen,								
Abs. 6.3.2	Bem situation	Reihe	hr	Ftr,Rd	K 3,r	K 4,r	K 5,r	K 10,r	Keff,r
			[mm]	[kN]	[mm]	[mm]	[mm]	[mm]	[mm]
	ständig	R1	492.1	336	11.1	16.9	11.0	6.4	2.5
		R2	372.1	192	10.6	16.0	9.5	6.4	2.4
		R3	475.0	319	11.1	16.9	10.5	6.4	2.5
	Funct winksame TragBhilgkeit der Schraubennehr vom Druckpunkt hr: Hebelamm der Schraubennehr vom Druckpunkt Kizz Steligkeitskoeffizient für Schraubennehr vom Druckpunkt								
Biegetragfähigkeit	Biegetragfäh	igkeit und An	fangsro	tationss	teifigkei	it,			
Abs. 6.4.2	Bem	M-j,R	d	Z-ec	4	k-eq	k	1,r	S-j,ini
	situation	M+j,R	d	Z+ec	1	k+eq	k	2,r	S+j,ini
		[kNm	1	[mm]	1	[mm]	[mr	n] [MN	m/rad]
	ständig	236.72	3	442.0)	4.8		00	197.53
	-	151.63	3	475.0)	2.5	C	.0	118.26
	Mind: Biege Zmi: ăqui krg: ăqui k1,r: Steifi k2,r: Steifi	etragfähigkeit des / valenter Hebelarm valenter Steifigkeits gkeitskoeffizient fü gkeitskoeffizient fü	nschlusse koeffizien r Stützens r Stützens	s t teg mit Sch teg mit Qu	ub erdruck				

Bild 10. Ausgabebeispiel der Rotationssteifigkeitsermittlung

Ausgabe

Die Ausgabe ist nach der üblichen Gliederung aufgebaut und an der Struktur des Eingabekatalogs orientiert. Zu Beginn ist das "System" mit den Systemgrafiken zu sehen. Hierin wird der eingegebene Anschluss grafisch abgebildet und bemaßt.

Bild 11. Systemgrafiken

Der Maßstab der Grafiken und deren Anordnung können unter "Ausgabe" im Eingabekatalog bestimmt werden. Unterhalb der Grafik sind tabellarisch alle "Komponenten" aufgeführt und näher beschrieben. Nach dem "System" folgen die Schnittgrößen, die als charakteristische Schnittgrößen sowie als Bemessungsschnittgrößen ausgegeben werden. Unter "Mat./Querschnitt" sind wie gewohnt die Daten der verwendeten Materialien und Querschnitte der Anschlussbauteile und Verbindungsmittel detailliert aufgelistet. Es können auch alle Bauteile grafisch angezeigt werden.

Das Kapitel "Nachweise" enthält in tabellarischer Form alle Nachweise der Komponentenmethode sowie die Sondernachweise für das Schubfeld, Schrauben und Schweißnähte.

Zusammenfassung	Zusammenfassung der Nachweise		
Nachweise (GZT)	Nachweise im Grenzzustand der Tragfähigkeit		
	Nachweis		η [-]
	Anschluss	OK	0.32
	Spannungsnachweise (Schubfeld)	OK	0.19
	Spannungsnachweise (Bleche)	OK	0.16
	Verbindungsmittel (Schrauben)	OK	0.03
	Verbindungsmittel (Schweißnähte)	OK	0.18

Bild 12. Ausgabebeispiel Zusammenfassung

Am Ende der Ausgabe werden in der "Zusammenfassung" die maßgebenden Ausnutzungsgrade der zuvor geführten Nachweise nochmals übersichtlich gelistet.

Dipl.-Ing. Marcel Lang mb AEC Software GmbH mb-news@mbaec.de

Literatur

- DIN EN 1993-1-8:2010-12 + NA: Eurocode 3: Bemessung und Konstruktion von Stahlbauten – Teil 1-8: Bemessung von Anschlüssen. Deutsche Fassung EN 1993-1-8: 2005 + AC:200
- [2] Stahlbau Kalender 2017, U. Kuhlmann, Ernst & Sohn-Verlag, Berlin, 2017.
- [3] Stahlbau-Praxis nach Eurocode 2 Band 2, G. Wagenknecht, 3. Auflage, Beuth-Verlag, Berlin-Wien-Zürich, 2011.
- [4] Leistungsbeschreibung S680.de mb-news 03/2018
- [5] Kretz, J.: Anschlüsse nach DIN EN 1993-1-8. Teil 1: Allgemeine Grundlagen zur Anschlussbemessung / Komponentenmethode. In mb-news 4/2017.
- [6] Kretz, J.: Anschlüsse nach DIN EN 1993-1-8. Teil 2: Grundlagen zu Anschlüssen mit H- und I-Querschnitten / Kenngröße Momententragfähigkeit. In mb-news 5/2017.
- [7] Kretz, J.: Anschlüsse nach DIN EN 1993-1-8. Teil 3: Grundlagen zu Anschlüssen mit H- und I-Querschnitten / Kenngrößen Rotationssteifigkeit und Rotationskapazität. In mb-news 3/2018.

Preise und Angebote

S682.de Stahl-Riegelanschluss, Komponentenmethode – EC 3, DIN EN 1993-1-8 Leistungsbeschreibung siehe nebenstehenden Fachartikel	490,- EUR
BauStatik 5er-Paket bestehend aus 5 BauStatik-Modulen deutscher Norm nach Wahl*	990,– EUR
BauStatik 10er-Paket bestehend aus 10 BauStatik-Modulen deutscher Norm nach Wahl*	1.690,– EUR
* ausgenommen S012, S018, S030, S928, S141.de, S261.de, S410.de, S411.de, S414.de, S630.de, S853.de	

Es gelten unsere Allgemeinen Geschäftsbedingungen. Änderungen und Irrtümer vorbehalten. Alle Preise zzgl. Versandkosten und MwSt. – Hardlock für Einzelplatzlizenz je Arbeitsplatz erforderlich (95,- EUR). Folgelizenz-/Netzwerkbedingungen auf Anfrage. – Stand: Juli 2019

Unterstützte Betriebssysteme: Windows 7 (64) / Windows 8 (64) / Windows 10 (64)