Dipl.-Ing. David Hübel

Brandschutztechnische Nachweise tragender Stahlbauteile

Leistungsbeschreibung des BauStatik-Moduls S855.de Stahl-Querschnitte, Nachweise im Brandfall

Ein zentrales brandschutztechnisches Schutzziel für Tragwerke ist die Gewährleistung der Standsicherheit im Brandfall. Um die Tragfähigkeit von Stahlbauteilen im Brandfall für eine bestimmte Zeit sicherzustellen kann es notwendig sein, Stahlprofile brandschutztechnisch zu verstärken. Mit dem Modul S855.de können brandschutztechnisch ungeschützte und mit Brandschutzmaterialien geschützte sowie feuerverzinkte Stahlprofile hinsichtlich ihrer Tragfähigkeit unter Brandbeanspruchung nachgewiesen werden.

Allgemeines

Das Materialverhalten von Stahl ist stark temperaturabhängig. Mit steigender Temperatur verliert der Stahl an Tragfähigkeit.

Um die Tragfähigkeit von Stahlprofilen zu erhöhen, können diese brandschutztechnisch geschützt werden. Neben der Verkleidung eines Stahlprofils mit Brandschutzmaterialien können Stahlprofile für eine brandschutztechnische Verstärkung auch feuerverzinkt ausgeführt werden. Der Vorteil feuerverzinkter Stahlprofile bildet die langsamere Erwärmung des Stahls. Diese verzögerte Entwicklung der Stahltemperatur basiert auf einer verringerten Emissivität der Oberfläche.

Bild 1. Abminderungsfaktoren von Stahl unter erhöhten Temperaturen, Bild 3.2 DIN EN 1993-1-2 [1]

System

Das System wird durch die Wahl des Positionstyps sowie der Nachweisart definiert.

Vorbemerk	ung <mark>System</mark> Ausgabe	Material/Querschnitt	Belastungen Erläuterung	Nachweise
Übernahme	aus Position			⊟ 1
J/N	Übernahme d	urchführen		
Positionstyp	0			⊡ 6
Тур	feuerverzinktes S	tahlprofil		×.
Nachweisar	t			⊟ 7
Art	Temperaturebene	9		~
	✓ Temperaturel Tragfähigkeit	sebene		

Bild 2. Eingabe "System"

Als Positionstyp stehen ungeschützte, geschützte und feuerverzinkte Stahlprofile zur Auswahl. Die Nachweisart wird durch die Wahl des Bemessungsverfahrens bestimmt. Zur Auswahl stehen die Nachweise auf Temperaturebene und Tragfähigkeitsebene.

Bild 3. Ausgabe "System"

Belastungen

Generell können die Belastungen im Brandfall in thermische und mechanische Einwirkungen unterschieden werden. Thermische Einwirkungen rufen Bauteilerwärmungen hervor. Die erhöhte Temperatur wirkt sich unmittelbar auf die Tragfähigkeit des Bauteils im Brandfall aus. Die thermischen Einwirkungen sind abhängig vom gewählten Profil sowie des vorgegebenen Brandfalls. Die mechanischen Einwirkungen werden für den Brandfall der außergewöhnlichen Bemessungssituation aus den charakteristischen Schnittgrößen bestimmt.

Vorbe	emerkung Au	System usgabe	Material/Qu	erschnitt	Belastungen Erläuterung	Nachweise
Berne	ssungsschnit	ttgrößen				⊟ 1.
J/N	vo	orgeben				
Lastab	otrag aus vo	rhandenen Po	sitionen 01			⊟ 2
Art						~
Lasteir	ngabe 01				II II II	□ = 2-
Art	<u>S</u> chni	ttgrößen				~
Schnit	tgrößen					
Kom			Kor	nmentar		
	EW	N× [kN]	My [kNm]	Vz [kN]	Mz [kNm]	Vy [kN]
1	Gk - Eigi ~	15.00	8.50	10		10.00
Lasteir	ngabe 02					⊟ 2-
Art						~

Bild 4. Eingabe "Belastungen"

Material/Querschnitt

Als Querschnitte stehen die in Bild 4 angegebenen Querschnittsformen und symmetrische oder unsymmetrische Schweißprofile zur Verfügung.

Profil	Rehe	Größe	
I-Profile	HD	A HEA 100	^
Komplex-Profile	HE	HEA 120	
L-Profile	HEA	HEA 140	
Rechteck-Hohiprofile	HEAA	HEA 160	
Rechteckprofile	HEAF	HEA 180	CK
Rohrprofile	HEB	HEA 200	ähbracher
Rundstähl	HEBF	HEA 220	
T-Profile	HEC	HEA 240	Hilfe
U-Profile	HEM	HEA 260	Profilwahl
Vierkantstahl	HEME	HEA 280	Alle Größen
Z-Profile	HL.	U HEA 300	Dista Gräße

Bild 5. Auswahldialog "Profiltyp"

Die gewählten Profile können in ihrer Lage durch Vorgabe einer Drehung oder einer Spiegelung angepasst werden.

Vorbemerk	ung System Ausgabe	Materia	l/Querschnitt	Belastungen Erläuterung	Nachweise
Festigkeitsk	lasse				⊟ 10
S J/N	S 235 ~ Abminderun	g der Stre	ckgrenze		
Querschnitt	styp				⊡ 11
Art	Schweißprofil u	nsymmetri	sch		~
Schweißpro	fil unsymmetrisd	٦			⊟ 15
Lage	normal 🗸 🗸				
to	20.0	mm	Flanschdicke o	ben	
bo	220.0	mm	Flanschbreite o	ben	
ao	20.0	mm	Halskehlnahtdi	dke oben	
hw	180.0	mm	Steghöhe		
tw	8.0	mm	Stegdicke		
tu	15.0	mm	Flanschdicke u	nten	
bu	180.0	mm	Flanschbreite u	inten	
au	5.0	mm	Halskehlnahtdi	dke unten	
Brandschutz	zmaterial				⊟ 16
Material	Spritzputze Min	eralfaser			
dp	10	mm	Materialstärke		
Art	profilfolgende \	/erkleidung	9		\sim

Bild 6. Eingabe "Material/Querschnitt"

Brandschutzmaterialien		Spez. Masse $p_{ m p}$	Wärmeleitfähigkeit λ_p	Spez. Wärme $c_{ m p}$
		[kg/m³]	[W/mK]	[J/kgK]
Spritzputze	Mineralfaser	300	0,12	1200
	Vermiculite, Perlite	350	0,12	1200
Spezialputze	Vermiculite und Zementputz	550	0.12	1100
	Perlite und Zementputz	550	0,12	1100
	Vermiculite und Gipsputz	650	0.12	1100
	Perlite und Zementputz	050	0,12	1100
Platten	Vermiculite-Platten und Zement	800	0,2	1200
	Perlite-Platten und Zement	800		
	Faser-Silikate Platten	600	0,15	1200
	Faser-Calcium-Silikate	000		
	Faser-Zement Platten	800	0,15	1200
	Gipskarton	800	0,2	170
	Gipskarton-Feuerschutzplatten	945	0,2	1700
Matten	Faser-Silikate, Mineralwolle, Steinwolle	150	0,2	1200
Beton		2300	1,6	1000
Leichtbeton		1600	0,8	840
Betonsteine		2200	1	1200
Isolierbachsteine		1000	0,40	1200

Tabelle 1. Brandschutzmaterialien

Bei geschützten Stahlprofilen ist neben dem Profil das Brandschutzmaterial zu wählen. Hierbei stehen die in Tabelle 1 aufgeführten Putze und Platten auf Zement- bzw. Gips-Basis zur Verfügung, welche profilfolgend oder als Kastenverkleidung angeordnet werden können.

Bild 7. a) Profilfolgende Verkleidung b) Kastenverkleidung

Die unterschiedlichen Brandschutzmaterialien sind mit ihren brandschutztechnischen Materialeigenschaften in den Stammdaten hinterlegt.

Nachweise

Der Nachweis des gewählten Querschnitts erfolgt auf Grundlage der gewählten Nachweisart und unter Beachtung des gewählten Brandfalls.

Neben der Nachweisart ist die Entwicklung der Stahltemperatur maßgebend für den Nachweis. Die Stahltemperatur wird unter Beachtung des Positionstyps, des Profils sowie des Brandfalls bestimmt. Die Vorgabe des Brandfalls erfolgt durch die Vorgabe der Branddauer bzw. der Feuerwiderstandsdauer der brandbeanspruchten Seiten.

Vorbeme	kung System Ausgabe	Material/Quersch	nitt Belastungen Erläuterung	Nachweise
Kombinat	orik			⊟ 33
Art	 automatische K manuelle Komb 	Combination der Ei Dination der Einwir	nwirkungen kungen	
Grenzzust	and der Tragfähigkeit	t		⊟ 38
J/N	🗸 Nachweise füh	ren		
Widerstan	dsdauer			⊟ 39
treq	60 n	nin Feuerwi	derstandsdauer	
Brandfall				⊟ 40
Art	manuelle Vorgabe			~
Beflammte	Seiten			⊟ 42
J/N J/N	✓ Oben✓ Links	J/N J/N	✔ Unten✔ Rechts	

Bild 8. Eingabe "Nachweise"

Zusätzlich zur manuellen Vorgabe der beflammten Seiten können definierte Brandfälle ausgewählt werden:

Bild 9. a) Brandfall – Querschnitt mit dreiseitiger Beanspruchung b) Brandfall – Flansch mit dreiseitiger Beanspruchung

Entwicklung der Stahltemperatur

Grundlage für die Beurteilung der Tragfähigkeit brandbeanspruchter Stahlbauteile sind die Hochtemperatureigenschaften des Werkstoffes.

Die Ermittlung der Stahltemperatur erfolgt gemäß DIN EN 1993-1-2 sowohl für ungeschützte als auch geschützte Stahlprofile. Neben den Profileigenschaften gehen in die Berechnung thermische Materialkennwerte der verwendeten Stoffe sowie Luft- und Bauteiltemperaturen ein.

Ein wesentlicher Faktor stellt die Temperatur zwischen der Temperatur der umgebenden Luft und der Bauteiltemperatur dar. Die dem Nachweis zugrunde gelegten Lufttemperaturen werden in DIN EN 1991-1-2 in Temperaturzeitkurven definiert.

Im Modul S855.de wird die Einheitstemperaturzeitkurve (ETK) als maßgebende Temperaturzeitkurve berücksichtigt.

Einheitstemperaturzeitkurve

 $\theta_{g,t} = 20 + 345 \log_{10}(8 t + 1)$

mit

t	Brandzeit
$ heta_{\rm g,t}$	die Temperatur der umgebenden Luft zum Zeitpunkt <i>t</i>

Die Entwicklung der Stahltemperatur wird wie folgt iterativ ermittelt:

Ungeschützte Stahlkonstruktionen

$$\Delta \theta_{\rm a,t} = k_{\rm sh} \; \frac{\frac{A_{\rm m}}{V}}{c_{\rm a} \rho_{\rm a}} \dot{h}_{\rm net} \Delta t$$

mit

$k_{\rm sh}$	Korrekturfaktor für den Abschattungseffekt
$A_{\rm m}$	die dem Brand ausgesetzte
	Oberfläche des Bauteils [m²/m]
V	Volumen des Bauteils [m³/m]
Ca	spezifische Wärmekapazität Stahl
p_a	Rohdichte des Stahls
h _{net}	flächenbezogener Bemessungswert des
not	Nettowärmestroms

Der Korrekturfaktor für den Abschattungseffekt $k_{\rm sh}$ wird in Abhängigkeit des gewählten Profils bestimmt und ergibt sich aus dem Verhältnis des Profilfaktors $[A_{\rm m}/V]$ des ungeschützten Stahlprofils zum Profilfaktor $[A_{\rm m}/V]_{\rm b}$ eines das Profil umschließenden Kastens. Der flächenbezogene Bemessungswert des Nettowärmestroms \mathbf{h}_{net} wird nach DIN EN 1991-1-2 ermittelt:

Bemessungswert des Nettowärmestroms

$$\dot{h}_{\text{net,t}} = \dot{h}_{\text{net,c,t}} + \dot{h}_{\text{net,r,t}}$$

mit

$$\dot{h}_{\text{net,c,t}} = \alpha_{\text{c}} \cdot (\theta_{\text{g,t}} - \theta_{\text{a,t}})$$

$$\dot{h}_{\text{net,r,t}} = \Phi \cdot \varepsilon_{\text{m}} \cdot \varepsilon_{\text{f}} \cdot \sigma \cdot \left[\left(\theta_{\text{g,t}} + 273 \right)^4 - \left(\theta_{\text{a,t}} + 273 \right)^4 \right]$$

Φ	Konfigurationsfaktor für Abschattungseffekte
ε _m	Emissivität der Bauteiloberfläche
$\varepsilon_{\rm f}$	Emissivität der Flamme = 1,0
σ	Stephan-Boltzmann-Konstante
$\theta_{a,t}$	die Stahltemperatur zum Zeitpunkt <i>t</i>
$\theta_{g,t}$	die Temperatur der umgebenden
8,*	Luft zum Zeitpunkt t

Bei einer ungeschützten Stahlkonstruktion kann der Konfigurationsfaktor Φ für mögliche Abschattungseffekte sowie die Emissivität der Bauteiloberfläche manuell vorgegeben werden.

Bild 11. Ausgabe "Entwicklung der Stahltemperatur, feuerverzinktes Profil"

Wird kein Konfigurationsfaktor vorgegeben, wird dieser nach DIN EN 1991-1-2 vereinfacht mit Φ =1,0 angesetzt. Die Emissivität der Bauteiloberfläche wird bei ungeschützten Profilen automatisch nach Tabelle 2 angesetzt. Wahlweise kann die Emissivität der Bauteiloberfläche auch manuell vorgegeben werden. Bei feuerverzinkten Stahlprofilen wird die Emissivität unter Berücksichtigung der Oberflächentemperatur nach Tabelle 2 angesetzt.

Stahlsorte	$\epsilon_{\rm m}$ (≤ 500°C)	ε _m (> 500°C)
Baustahl	0,7	
Feuerverzinkter Baustahl ¹⁾	0,35	0,70

 $^{\rm D}$ Die Emissivität von feuerverzinktem Baustahl (gemäß DIN EN ISO 1461 und einer Stahlzusammensetzung gemäß Kategorie A und B nach DIN EN ISO 14713-2) ist bei Temperaturen bis 500 °C um 50% geringer.

Tabelle 2. Emissivität der Bauteiloberfläche

Geschützte Stahlkonstruktionen

$$\Delta \theta_{a,t} = \frac{\frac{\lambda_{p}A_{p}}{V}}{d_{p}c_{a}\rho_{a}} \frac{\left(\theta_{g,t} - \theta_{a,t}\right)}{\left(1 + \frac{\phi}{3}\right)} \Delta t - \left(e^{\frac{\phi}{10}} - 1\right) \cdot \Delta \theta_{g,t}$$

mit
$$\Phi \qquad = \frac{c_{p}\rho_{p}}{c_{a}\rho_{a}} \cdot d_{p} \cdot \frac{A_{p}}{V}$$

A _p	die dem Brand ausgesetzte
r	Oberfläche des Bauteils [m²/m]
V	Volumen des Bauteils [m³/m]
$d_{\rm p}$	die Dicke des Brandschutzmaterials
$\Delta \theta_{\rm g,t}$	der Anstieg der Umgebungstemperatur
0.	während des Zeitintervalls Δt
ρ_{2}	die Rohdichte von Stahl

Bild 12. Ausgabe "Entwicklung der Stahltemperatur geschütztes Profil"

Bemessungsverfahren

Für die rechnerisch brandschutztechnischen Nachweise von tragenden Stahlbauteilen werden in der DIN EN 1992-1-2 Näherungsverfahren bereitgestellt.

- Nachweis auf Temperaturebene
- Nachweis auf Tragfähigkeitsebene

Nachweis auf Temperaturebene

Beim Nachweis auf Temperaturebene wird nachgewiesen, dass die maximal im Brandfall auftretende Stahltemperatur $\theta_{a,t}$ unterhalb der kritischen Stahltemperatur $\theta_{a,cr}$ liegt.

$$\theta_{\mathrm{a,t}} \leq \theta_{\mathrm{a,cr}}$$
 bzw. $\eta = \frac{\theta_{\mathrm{a,t}}}{\theta_{\mathrm{a,cr}}} \leq 1$

Die kritische Stahltemperatur $\theta_{a,cr}$ ist die Temperatur, bei der der Bauteilwiderstand gerade noch so groß ist wie die Beanspruchung infolge mechanischer Lasten.

Für die Ermittlung der kritischen Temperatur bedarf es der Kenntnis des Lastausnutzungsgrades η_{kalt} des Bauteils. Der Lastausnutzungsgrad ergibt sich aus der Belastung des Bauteils zu Beginn der Brandeinwirkung (t = 0). Die kritische Temperatur in Abhängigkeit des Lastausnutzungsgrades wird wie folgt ermittelt:

$$\theta_{a,cr} = 39,19ln \left[\frac{1}{0,9674 \cdot \eta_{kalt}^{3,833}} - 1 \right] + 482$$

mit

$$\eta_{\text{kalt}} = \frac{E_{\text{fi},\text{d}}}{R_{\text{fi},\text{d},\text{t}=0}}$$

Der Nachweis auf Temperaturebene kann alternativ zum Nachweis auf Tragfähigkeitsebene verwendet werden, wenn keine Verformungskriterien oder Einflüsse aus Stabilitätsproblemen zu beachten sind.

Bild 13. Ausgabe "Nachweis auf Temperaturebene"

Nachweis auf Tragfähigkeitsebene

Beim Nachweis auf Tragfähigkeitsebene wird im Brandfall der Nachweis im Grenzzustand der Tragfähigkeit geführt.

$E_{\rm fi,d} \leq R_{\rm fi,d,t}$

Danach ist für die geforderte Feuerwiderstandsdauer t nachzuweisen, dass die Einwirkungen im Brandfall $E_{\text{fi},\text{d}}$ nach DIN EN 1991-2 kleiner sind als der Bauteilwiderstand $R_{\text{fi},\text{d},\text{t}}$ nach einer vorzugebenden Feuerwiderstandsdauer t.

Bild 14. Ausgabe "Nachweis auf Tragfähigkeitsebene"

Der Nachweis auf Tragfähigkeitsebene für den Brandfall erfolgt grundsätzlich analog zu den Nachweisverfahren bei Raumtemperatur. Es wird jedoch die Verringerung der Streckgrenze und das Elastizitätsmodul infolge der Temperaturerhöhung berücksichtigt.

Die Abminderungsfaktoren werden unter Beachtung der thermischen Belastung, also der Stahltemperatur zum Zeitpunkt *t*, bestimmt.

	Abminderungsfaktoren bei Temperatur $ heta_{ m a}$ relativ zu dem Wert $f_{ m y}$ oder $E_{ m a}$ bei 20°C				
Stahl- temperatur $ heta_{\rm a}$	Abminderungs- faktor (relativ zu f_y) für die effektive Fließgrenze $k_{y,\theta} = f_{y,\theta} / f_y$	Abminderungs- faktor (relativ zu f_y) für die Proportiona- litätsgrenze $k_{p,\theta} = f_{p,\theta} / f_y$	Abminderungs- faktor (relativ zu E_a) für die Steigung im elas- tischen Bereich $k_{\rm E,\theta} = E_{\rm a,\theta} / E_{\rm a}$		
20°C	1,000	1,000	1,000		
100°C	1,000	1,000	1,000		
200°C	1,000	0,807	0,900		
300°C	1,000	0,613	0,800		
400°C	1,000	0,420	0,700		
500°C	0,780	0,360	0,600		
600°C	0,470	0,180	0,310		
700°C	0,230	0,075	0,130		
800°C	0,110	0,050	0,090		
900°C	0,060	0,0375	0,0675		
1.000°C	0,040	0,0250	0,0450		
1.100°C	0,020	0,0125	0,0225		
1.200°C	0,000	0,0000	0,0000		

ANMERKUNG: Zwischenwerte dürfen linear interpoliert werden.

 Tabelle 3.
 Abminderungsfaktoren von Stahl unter erhöhten Temperaturen, Bild 3.2 DIN EN 1993-1-2 [1]

Tragfähigkeit unter Brandbeanspruchung

Die Normalkrafttragfähigkeit bei Brandeinwirkung wird analog zur Normalkrafttragfähigkeit ohne Brandeinwirkung ermittelt.

Tragfähigkeit Zugglieder

$$N_{\rm fi,\theta,Rd} = k_{\rm y,\theta} \cdot N_{\rm Rd} \left[\frac{\gamma_{\rm M,0}}{\gamma_{\rm M,fi}} \right]$$

mit

$k_{\mathrm{y}, \theta}$	der Abminderungsfaktor der Streckgrenze von
	Stahl bei der Temperatur θ_a zum Zeitpunkt t ,
N _{Rd}	der Bemessungswert der Tragfähigkeit des Bruttoquerschnitts mit Normaltemperatur nach EN 1993-1-1;

Wenn Druckkräfte vorliegen, kann Biegeknicken berücksichtigt werden. Hierzu ist die Vorgabe der Ersatzstablängen des Stahlprofils in y- und z-Richtung erforderlich. Die Knicklängen können im Kapitel "Nachweise" vorgegeben werden. Tragfähigkeit Druckglieder

$$N_{\mathrm{fi},\theta,\mathrm{Rd}} = \chi_{\mathrm{fi}} \cdot k_{\mathrm{y},\theta} \cdot N_{\mathrm{Rd}} \left[\frac{\gamma_{\mathrm{M},0}}{\gamma_{\mathrm{M},\mathrm{fi}}} \right]$$

mit

χ_{fi} Abminderungsfaktor für das Biegeknicken unter Brandbeanspruchung

Querkrafttragfähigkeit

$$V_{\rm Rd} = k_{\rm y,\theta} \cdot \left[\frac{\gamma_{\rm M,0}}{\gamma_{\rm M,fi}}\right] \cdot \frac{V_{\rm Rd}}{\kappa_1 \cdot \kappa_2}$$

mit

Der Bemessungswert des Bauteilwiderstands $M_{\rm fi,\theta,Rd}$ wird unter Berücksichtigung einer ungleichförmigen Temperaturbeanspruchung zum Zeitpunkt t nach folgender Gleichung berechnet:

Momententragfähigkeit

$$M_{\rm fi,\theta,Rd} = k_{\rm y,\theta} \cdot \left[\frac{\gamma_{\rm M,0}}{\gamma_{\rm M,fi}}\right] \cdot \frac{M_{\rm Rd}}{\kappa_1 \cdot \kappa_2}$$

mit

M _{Rd}	lastische Momententragfähigkeit des rutteguerschnitts bei Normaltemperatur	
κ ₁ , κ ₂	Anpassungsfaktor für ungleichmäßige Temperaturverteilung	

Die Größe des Anpassungsfaktors κ_1 für eine ungleichmäßige Temperaturverteilung über den Querschnitt sowie der Anpassungsfaktor κ_2 für ungleichmäßige Temperaturverteilung entlang des Trägers kann wie folgt angesetzt werden:

Anpassungsfaktoren	
Beflammung	<i>к</i> ₁
allseitig	1,00
dreiseitig, ungeschützter Träger mit einseitiger Stahlbeton oder Stahlbeton- verbundplatte	0,70
dreiseitig, geschützter Träger mit einseitiger Stahlbeton oder Stahlbetonverbundplatte	0,85
Statisches System	κ2
Statisch unbestimmte Systeme	1,00
Statisch bestimme Systeme	0,85

Tabelle 4.Anpassungsfaktoren K2 und K2

Der Anpassungsfaktor κ_1 kann wahlweise automatisch vom Programm oder manuell vorgegeben werden. Bei der automatischen Ermittlung des Anpassungsfaktors wird je nach Wahl des Brandfalls bzw. der brandbeanspruchten Seite der Anpassungsfaktor κ_1 vom Programm automatisch ermittelt.

Bild 15. Eingabe "Nachweise"

Ausgabe

Es wird eine vollständige, übersichtliche und prüffähige Ausgabe des Nachweises der Tragfähigkeit unter Brandbeanspruchung zur Verfügung gestellt. Der Anwender kann den Ausgabeumfang in der gewohnten Weise steuern.

Fazit

Aufgrund der hohen Bedeutung für die Standsicherheit stellt der Brandschutz einen wichtigen Teil der Tragwerksbemessung dar. Der brandschutztechnische Nachweis auf Grundlage der DIN EN 1993-1-2 regelt den Brandschutznachweis für tragende Stahlbauteile.

Mit dem Modul S855.de können tragende Stahlbauteile hinsichtlich Ihrer Tragfähigkeit unter Brandbeanspruchung nachgewiesen werden. Zur Erhöhung der Feuerwiderstandsfähigkeit können, neben ungeschützten Stahlprofilen, geschützte oder feuerverzinkte Stahlprofile nachgewiesen werden.

Eine Feuerverzinkung verlängert aufgrund der verringerten Emissivität die Feuerwiderstandsfähigkeit von Stahl. Hierdurch ergeben sich brandschutztechnische Vorteile, die vielfach das Erreichen einer 30-minütigen Feuerwiderstandsdauer möglich machen.

Dipl.-Ing. David Hübel mb AEC Software GmbH mb-news@mbaec.de

Literatur

- DIN EN 1993-1-2: Eurocode 3: Bemessung und Konstruktion von Stahlbauten – Teil 1-2: Allgemeine Regeln – Tragwerksbemessung für den Brandfall; Deutsche Fassung EN 1993-1-2:2005 + AC:2009.
- [2] DIN EN 1993-1-2/NA: Nationaler Anhang National festgelegte Parameter – Eurocode 3: Bemessung und Konstruktion von Stahlbauten – Teil 1-2: Allgemeine Regeln – Tragwerksbemessung für den Brandfall.
- [3] DIN EN 1991-1-2: Eurocode 1: Einwirkungen auf Tragwerke Teil 1-2: Allgemeine Einwirkungen – Brandeinwirkungen auf Tragwerke; Deutsche Fassung EN 1991-1-2:2002 + AC:2009.
- [4] DIN EN 1991-1-2/NA: Nationaler Anhang National festgelegte Parameter – Eurocode 1: Einwirkungen auf Tragwerke – Teil 1-2: Allgemeine Einwirkungen – Brandeinwirkungen auf Tragwerke.
- [5] Stahlbau-Kalender 2014: Eurocode 3 Grundnorm, Außergewöhnliche Einwirkungen Hrsg.: Ulrike Kuhlmann 2014, Ernst & Sohn.
- [6] https://www.feuerverzinken.com/anwendungen/bauen/ brandschutz

Preise und Angebote

S855.de Stahl-Querschnitte, Nachweise im Brandfall – EC 3, DIN EN 1993-1-2 Weitere Informationen unter https://www.mbaec.de/modul/S855.de

Es gelten unsere Allgemeinen Geschäftsbedingungen. Änderungen und Irrtümer vorbehalten. Alle Preise zzgl. Versandkosten und MwSt. – Hardlock für Einzelplatzlizenz je Arbeitsplatz erforderlich (95,- EUR). Folgelizenz-/Netzwerkbedingungen auf Anfrage. – Stand: Juni 2020

Unterstütztes Betriebssystem: Windows 10 (64)