Dipl.-Ing. Marcel Lang

Stahl-Rahmenecke nach EC 3

Leistungsbeschreibung des BauStatik-Moduls S680.de Stahl-Rahmenecke, Komponentenmethode

Ein in der Baupraxis gängiger Anschlusstyp stellt die Stahl-Rahmenecke dar. Das Modul S680.de berechnet die geschraubte Rahmenecke auf Grundlage der Komponentenmethode. Vorteil dieser Methode ist u.a. die Charakterisierung der Nachgiebigkeit des Anschlusses. Das Modul bietet vielerlei Ausführungsmöglichkeiten rund um die Stahl-Rahmenecke.

Allgemein

Das Modul S680.de kann für den Nachweis bzw. die Bemessung von Rahmenecken mittels Komponentenmethode nach DIN EN 1993-1-8 [1] angewendet werden.

Wie in der Einleitung angedeutet, ist der Vorteil der Komponentenmethode, neben der grundlegenden Ermittlung der Druck- und Zugtragfähigkeit des gewählten Anschlusses, die zusätzliche Charakterisierung der Rahmenecke hinsichtlich der Nachgiebigkeit. Dadurch wird das Verformungsverhalten des Anschlusses bei der Auslegung und Nachweisführung berücksichtigt. Die Rahmenecke kann unter wählbarem Winkel als Schraubanschluss ausgeführt werden. Der angeschlossene Träger kann als seitlicher oder aufgelegter Anschluss, mit oder ohne Voute, ausgeführt werden. Zusätzlich kann der Anschluss mit Steifen, Stegblech oder Futterplatte optional erweitert werden. So ergeben sich für den Anwender zahlreiche Gestaltungsmöglichkeiten.

Neben den Nachweisen der Komponentenmethode werden Spannungsnachweise der Anschlussbauteile sowie Schrauben- und Schweißnahtnachweise geführt. In gewohnter Form stehen grafische Hilfe und Texthilfe für die Eingaben zur Seite.

System

Der Anschlusstyp ist eine Stahlrahmenecke (siehe Titelbild). Als Anschlussform stehen der seitliche Trägeranschluss oder der aufgelegte Träger zur Verfügung. Der Träger wird mittels angeschweißter Stirnplatte an oder direkt auf eine Stütze geschraubt. Der Oberkantenabschluss der Rahmenecke kann in beliebiger Form gestaltet werden. Dazu stehen die Optionen "bündig zur Stirnplatte" oder "bündig zur Unterkante der Kopfplatte" zur Verfügung. Im weiteren Verlauf der Eingabe kann der Oberkantenabschluss über die Vorgabe geometrischer Abmessungen detaillierter gestaltet werden.

Die komplette Eingabemaske "System" ist in Bild 1 veranschaulicht.

Vorberr Belas	nerkung tungen	<mark>System</mark> Nachwei	Material/Querschnitt ise Ausgabe	Verbindungsmittel Erläuterung
Position	styp			= 1
Тур	Riegel	am Stiel seitlic	h anschließen	~
Ausbildu	ung Stützei	nflansch		<u> </u>
Art	🔵 bün 💿 bün	dig zur Stirnpl dig zur Unterk	atte ante der Kopfplatte	
Riegelne	eigung			⊟ 4
δ		15.00 °	Riegelneigung	

Bild 1. Eingabemaske "System"

Material/Querschnitt

Im Kapitel "Material/Querschnitt" werden alle einzelnen "Komponenten" des Anschlusses definiert. Die Stütze und der Anschlussträger können entweder als I-Profile oder als Schweißprofile ausgeführt werden.

Alle zu wählenden Bauteile wie Stütze, Riegel, Aussteifungselemente (Stegblech oder -steifen), Voute, Kopf-, Stirn- und/ oder Futterplatte werden in eigenen Abschnitten vorgegeben. Dort können u.a. Stahlsorte, Querschnitte, geometrische Abmessungen der Anschlussbauteile und Schweißnahtdicken gewählt werden. Ein Teil der Parameter kann vom Modul automatisch bemessen werden (wie z.B. Schweißnähte, Plattendicken, usw.). Für alle Parameter ist aber auch eine manuelle Vorgabe möglich.

Bei der Auswahl der Aussteifung kann zwischen Stegblech, Stegsteifen oder "keine" gewählt werden. Wird ein Aussteifungselement angeordnet, so öffnet sich die entsprechende Eingabe. Hier kann dann zwischen "einseitig" oder "beidseitig" angeordneter Steife oder Stegblech gewählt werden.

Die Schweißnähte werden direkt am betreffenden Bauteil eingegeben.

Alle Bezeichnungen und Indizes sind normgerecht und am Bauteil orientiert benannt.

Verbindungsmittel

Im Kapitel "Verbindungsmittel" werden Schrauben und Schraubenabstände vorgegeben. Grundlegend wird zwischen 2- oder 4-reihigen Schraubenreihen unterschieden. Die Schrauben können als innen- und außenliegende Schraubenreihen angeordnet werden. Es sind bis zu 6 Schraubenreihen möglich (2 außen und 4 innen) (Bild 3).

Die Schraubenabstände können in vertikaler und horizontaler Anordnung bestimmt werden. Hier besteht auch die Möglichkeit mit Mindestwerten rechnen zu lassen. Die Schrauben können u.a. "kontrolliert vorgespannt" werden (Bild 2).

Vorberner Belastu	kung S ngen	ystem Nachweise	Material/Querschnitt Ausgabe	Verbindungsmittel Erläuterung
Schrauben	1			. 63
Auswahl d	er Schrauben			
Bez	M20 10.9 (F	Rohe Schraub	en)	
J/N	kontroll	ierte Vorspan	nung, Kategorie E	
Schrauben	vertikale An	ordnung		- 65
Тур	 2-reihige 4-reihige 	er Anschluss er Anschluss		
Schrauben	reihe am obe	eren Flansch		
з ^о	 Mindest Manuell 	wert		
ao		70 mm	Abstand OK Oberfla	insch
J/N	Weitere	innere Reihe	n	
J/IN	Außere	Keine		
Schrauben	reihe am unt	æren Flansch		
ап	 Mindest Manuell 	wert		
аu		70 mm	Abstand UK Unterfla	ansch
J/N	Weitere	innere Reihe	n	
J/N	Außere	Reihe		
Schrauben	horizontale /	Anordnung		₋ 82
e 2	 Mindest Manuell 	wert		
e 2		35 mm		

Bild 2. Schraubeneingabe

Bild 3. Schraubenbild und -abstände

Belastungen

Als Belastungen werden die Riegelschnittgrößen unmittelbar neben dem Rahmenknoten vorgegeben ($M_{\rm R}$, $V_{\rm R}$, $N_{\rm R}$). Zusätzlich können äußere Knotenlasten im Rahmenknoten definiert ($M_{\rm y}$, $F_{\rm z}$, $F_{\rm x}$) werden. Aus diesen Angaben werden die entsprechenden Schnittgrößen in den maßgebenden Schnitten berechnet. Bild 4 zeigt die Lastvektoren am Knotenpunkt. Eine Einzelwertübernahme/-übergabe ist ebenfalls möglich.

Bild 4. Lastvektoren der Rahmenecke

Nachweise

Das Modul ermittelt sowohl charakteristische als auch Bemessungsschnittgrößen, die sowohl tabellarisch als auch grafisch ausgegeben werden können. Die Nachweise nach der Komponentenmethode für I/H-Anschlüsse richten sich nach DIN EN 1993-1-8 [1].

Die Bemessungsgrundlagen werden ausführlich in der Artikelserie von Dr. Joachim Kretz [4-6] erläutert, deren dritter Teil in vorliegender Ausgabe veröffentlicht ist.

Der Anschluss enthält folgende Komponenten (chronologisch nach der Modulausführung) (Bild 5):

- Schrauben auf Zug (Komponente 10)
- Stirnplatte sowie Stützenflansch auf Biegung (Komponenten 4 und 5)
- Trägersteg mit Zug (Komponente 8)
- Stützensteg mit Querzug (Komponente 3)
- Stützensteg mit Schub (Komponente 1)
- Stützensteg mit Querdruck (Komponente 2)
- Trägerflansch/-steg oder Voutenflansch mit Druck (Komponente 7)
- Trägersteg mit Querdruck (Komponente 2)

Die Komponenten für Verbindungsmittel:

- Lochleibung (Komponente 12)
- Abscheren (Komponente 11)
- Schweißnähte (Komponente 19)

Darüber hinaus werden weitere Schrauben- und Schweißnahtnachweise geführt (Zug + Abscheren, richtungsbezogenes Verfahren).

		Verweis auf Berechnungsverfahren			
Komponente		Tragfähigkeit	Steifigkeits- koeffizient	Rotations- kapazität	
1	Stützenstegfeld mit Schubbeanspruchung	6.2.6.1	6.3.2	6.4.2 6.4.3	
2	Stützensteg mit Quer- druckbeanspruchung	6.2.6.2	6.3.2	6.4.2 6.4.3	
3	Stützensteg mit Querzugbeanspruchung	6.2.6.3	6.3.2	6.4.2 6.4.3	
4	Stützenflansch mit Biegung F_{LEd}	6.2.6.4	6.3.2	6.4.2 6.4.3	
5	Stirnblech mit Biegebeanspruchung	6.2.6.5	6.3.2	6.4.2	
6	Flanschwinkel mit Biegebeanspruchung	6.2.6.6	6.3.2	6.4.2	
7	Träger- oder Stützen- flansch und -steg mit Druckbeanspruchung $F_{c.Ed}$	6.2.6.7	6.3.2	-	
8	Trägersteg mit Zugbeanspruchung	6.2.6.8	6.3.2	-	
9	Blech mit Zug- oder Druckbeanspruchung $\overrightarrow{F_{t,Ed}}$ $\overrightarrow{F_{t,Ed}}$ $\overrightarrow{F_{c,Ed}}$ $\overrightarrow{F_{c,Ed}}$	auf Zug: EN 1993-1-1 auf Druck: EN 1993-1-1	6.3.2	-	
10	Schrauben mit Zug- beanspruchung $F_{t,Ed}$	mit Stützenflansch: 6.2.6.4 mit Stirnblech: 6.2.6.5 mit Flanschwinkel: 6.2.6.6	6.3.2	6.4.2	

Bild 5. Grundkomponenten 1 – 10, Tab. 6.1 DIN EN 1993-1-8 [1]

Ermittlung der effektiven Längen

Grundlage für die Ermittlung der Komponententragfähigkeiten, aber auch für die Anfangsrotationssteifigkeit, bilden die effektiven Längen (siehe Glg. (1) und (2)). Im EC 3, Abs. 6.2.6.5 und 6.2.6.6/ Tab. 6.4 - 6.6 [1] sind Tabellen für die effektiven Längen hinterlegt. Die Auswahl unterscheidet grundlegend zwischen ausgesteiftem und nicht ausgesteiftem Anschluss. Weitere Kriterien bei der Ermittlung der effektiven Längen sind die Lagen der Schraubenreihen sowie das betrachtete Bauteil (Bild 6).

effektive Länge für Modus 1:	
$l_{\rm eff,1} = l_{\rm eff,nc} \le l_{\rm eff,cp}$	(1)
effektive Länge für Modus 2:	
$l_{\rm eff,2} = l_{\rm eff,nc}$	(2)

mit $l_{eff,nc}$ eff. Länge für nicht kreisförmiges Muster $l_{eff,cp}$ eff. Länge für kreisförmiges Muster

Bild 6. Definition der Schraubenreihen für die effektiven Längen [1, Bild 6.9]

Komponente 10 sowie 4 und 5

Komponente 10 bildet die Tragfähigkeit der Schraube auf Zug. Die Zugtragfähigkeit wird nach EC 3 [1] berechnet:

Tragfähig	keit der Schraube auf Zug:	
$F_{t,Rd} = k_2$	$\cdot A_{\rm s} \cdot \frac{f_{\rm ub}}{\gamma_{\rm M2}}$	(3)
mit		
<i>k</i> ₂	Beiwert der Zugtragfähigkeit	
As	Spannungsquerschnitt	

Bei den Komponenten 4 und 5 werden zwei Bauteile untersucht. Die Stirnplatte und der Stützenflansch. Es werden für jede Schraubenreihe bzw. Schraubengruppe drei Versagensmodi betrachtet:

- Modus 1: vollständiges Fließen der Flansche: F_{T,1,Rd}
- Modus 2: Schraubenversagen mit Fließen der Flansche, es treten Abstützkräfte auf: F_{T,2,Rd}
- Modus 3: Schraubenversagen auf Zug, es treten keine Abstützkräfte auf: F_{T,3,Rd}

Die Biegetragfähigkeit $F_{t,ep,Rd}$ der Stirnplatte für die horizontale Schraubenreihe r entspricht dem Mindestwert der drei Versagensmöglichkeiten:

$$F_{t,ep,Rd} = \min\{F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}\}$$
(4)

Komponente 8

Die Tragfähigkeit des Trägerstegs mit Zugbeanspruchung berechnet sich wie folgt:

$F_{t,wb,Rd} =$ mit	$\min\left\{\frac{b_{\text{eff,t,wb}} \cdot t_{\text{wb}} \cdot f_{\text{y,wb}}}{\gamma_{\text{M0}}}; \frac{l_{\text{eff}} \cdot \sum a_{\text{w}} \cdot f_{1,\text{w,Rd}}}{\sqrt{2}}\right\} (5)$
b _{eff,t,wb}	effektive Breite des Trägersteges
	mit Zug; diese eff. Breite ist mit der
	wirksamen Länge des äquivalenten
	T-Stummelmodells gleichzusetzen
l _{eff}	wirksame Länge des äquivalenten
	T-Stummel-Modells für die Stirnbleche
t _{wb}	Dicke des Trägerstegs
a _w	Nahtdicke der Stegnaht
$f_{\rm y,wb}$	Streckgrenze des Trägerstegs
$f_{1,w,Rd}$	Beanspruchbarkeit der Kehlnaht

Komponente 1–3

Die Komponenten 1–3 betreffen den Stützensteg auf Schub-, Druck- oder Zugbeanspruchung. Die Tragfähigkeiten lassen sich mit folgenden Gleichungen ermitteln:

Komponente 1 (Schubbeanspruchung):	
$V_{\rm wp,Rd} = \frac{0.9 \cdot f_{\rm y,wc} \cdot A_{\rm vc}}{\sqrt{3} \cdot \gamma_{\rm M0}} + V_{\rm wp,add,Rd}$	(6)

Komponente 2 (Querdruck):

$$F_{c,wc,Rd} = \frac{\omega \cdot k_{wc} \cdot \rho \cdot b_{eff,c,wc} \cdot t_{wc} \cdot f_{y,wc}}{\gamma_{M1}}$$
(7)

Komponente 3 (Querzug):

$$F_{t,wc,Rd} = \frac{\omega \cdot b_{eff,t,wc} \cdot t_{wc} \cdot f_{y,wc}}{\gamma_{M0}}$$
(8)

mit

$A_{\rm vc}$	wirksame Schubfläche
$V_{wp,add,Rd}$	Erhöhungsanteil des Schubwiderstands
1, ,	aus den Steifen (wenn vorhanden)
ω	Abminderungsfaktor nach
	Tab. 3, Abs. 6.2.6.1 [1]
k _{wc}	Stegbeiwert nach Abs. 6.2.6.2(2) [1]
ρ	Abminderungsbeiwert für Platten-
	beulen nach Abs. 6.2.6.2(1) [1]
b _{eff.c.wc}	wirksame Breite des Stützenstegs für
- , , , -	Querdruck nach Abs. 6.2.6.2(1) [1]
$t_{\rm wc}$	Stegdicke
$b_{\rm eff.t.wc}$	wirksame Breite des Stützenstegs für
011,0,170	Ouerzug nach Abs. 6.2.6.3(1) [1]

Komponente 7:

Trägerflansch/-steg mit Druckbeanspruchung Die Resultierende des Druckwiderstandes des Trägerflansches und der angrenzenden Druckzone im Trägersteg darf in der Flanschmittellinie angenommen werden. Die Tragfähigkeit auf Druck ermittelt sich nach Gleichung (9) zu:

$$F_{c,fb,Rd} = \frac{M_{c,Rd}}{h - t_{fb}}$$
(9)
mit
$$h \qquad H \ddot{o}he \ des \ angeschlossenen \ Trägers M_{c,Rd} \qquad Biegetragfähigkeit \ des \ Trägerquerschnitts t_{fb} \qquad Dicke \ des \ Trägerflansches$$

Komponente 11 und 12:

Abscheren und Lochleibung der Schrauben

Unter Komponente 11 und 12 werden die üblichen Nachweise für Abscheren und Lochleibung nach EC 3 [1] geführt. Nachfolgend sind die Gleichungen für die entsprechenden Nachweise erläutert:

Abscherwiderstand:

$$F_{\rm v,Rd} = \alpha_{\rm v} \cdot A \cdot \frac{f_{\rm ub}}{\gamma_{\rm M2}} \tag{10}$$

Lochleibungswiderstand:

$$F_{\rm b,Rd} = k_1 \cdot \alpha_b \cdot t \cdot \frac{d \cdot f_{\rm u}}{\gamma_{\rm M2}} \tag{11}$$

mit

$ \begin{array}{l} \alpha_{\rm v} \\ A \\ f_{\rm ub} \\ k_1 \\ \alpha_{\rm b} \\ t \\ d \end{array} $	Abminderungsbeiwert für Abscheren Schraubenschaftquerschnittsfläche Zugfestigkeit des Schraubenwerkstoffs Beiwert für Lochleibung Abminderungsbeiwert für Lochleibung Blechdicke des betrachteten Bauteils Schraubengewindedurchmesser

Zusätzlich werden die Schrauben auf die Interaktionskombination "Zug + Abscheren" untersucht.

Zug + Ab	scheren:	
$\frac{F_{\rm t,Ed}}{1,4 F_{\rm t,Rd}} +$	$\frac{F_{\rm v,Ed}}{F_{\rm v,Rd}} \le 1.0$	(12)
mit		
$ \begin{array}{l} \alpha_{\rm v} \\ A \\ f_{\rm ub} \\ k_1 \\ \alpha_{\rm b} \\ t \\ d \end{array} $	Abminderungsbeiwert für Abscheren Schraubenschaftquerschnittsfläche Zugfestigkeit des Schraubenwerkstoffs Beiwert für Lochleibung Abminderungsbeiwert für Lochleibung Blechdicke des betrachteten Bauteils Schraubengewindedurchmesser	

Komponente 19: Schweißnähte

Komponente 19 ist der Schweißnahtnachweis. Die Schweißnähte werden nach dem richtungsbezogenen Verfahren nachgewiesen und als Kehlnähte ausgeführt. Es werden alle Kraftrichtungen berücksichtigt und in Form der Vergleichsspannung nachgewiesen [1]:

$$\sigma_{\text{V,w,Ed}} = \sqrt{\sigma_{\perp}^2 + 3 \cdot (\tau_{\perp}^2 + \tau_{\parallel}^2)} \le f_{\text{vw,Rd}} \frac{f_{\text{u}}}{\beta_{\text{w}} \cdot \gamma_{\text{M2}}}$$
(13)
mit

$$\begin{array}{ll} \sigma_{\rm V,w,Ed} & {\rm Bemessungswert} \; {\rm der} \; {\rm einwirkenden} \\ {\rm Vergleichsspannung} \; {\rm der} \; {\rm Schweißnaht} \\ \\ \sigma_{\rm L} & {\rm Hauptspannung} \; {\rm senkrecht} \; {\rm zur} \; {\rm Nahtebene} \\ \\ \tau_{\rm L} & {\rm Schubspannung} \; {\rm senkrecht} \; {\rm zur} \; {\rm Nahtebene} \\ \\ \tau_{\parallel} & {\rm Schubspannung} \; {\rm parallel} \; {\rm zur} \; {\rm Nahtebene} \\ \\ f_{\rm vw,Rd} & {\rm Bemessungswerte} \; {\rm der} \; {\rm Scherfestigkeit} \; {\rm der} \; {\rm Nahtebene} \\ \\ f_{\rm u} & {\rm Zugfestigkeit} \; {\rm des} \; {\rm schwächeren} \; {\rm der} \\ \\ {\rm angeschlossenen} \; {\rm Bauteile} \\ \\ \\ \beta_{\rm w} & {\rm Korrelationsbeiwert} \; {\rm nach} \; [1] \\ \end{array}$$

Konstruktiv ausgeführte Schweißnähte:

$$\sum_{\mathbf{a}_{w}} a_{w} \geq t \cdot \frac{f_{y}}{f_{u}} \cdot \sqrt{2} \cdot \beta_{w} \cdot \frac{\gamma_{M2}}{\gamma_{M0}}$$
(14)
mit

 a_w Nahtdicke Flansch bzw. Steg t Steg- bzw. Flanschdicke

Steifen [3]

Werden Stegsteifen angeordnet, werden zur Komponentenmethode zusätzlich Nachweise für Steifen und das Schubfeld (Komponente 9) geführt. Nach dem Kommentar zur DIN EN 1993-1-8 [2, Abs. 6.2.6.1)]: "Werden Steifen zur Erhöhung der Schubbeanspruchung verwendet, müssen diese in Druck- und Zugzone angeordnet werden...". D.h., wenn Steifen gewählt werden, müssen je eine Druck- und eine Zugsteife angeordnet werden. Weiter wird ein Vollanschluss gefordert. Das bedeutet, eine umlaufende Schweißnaht muss ausgeführt werden. Hintergrund ist der Übertrag zusätzlicher Schubkräfte durch den Vierendeelmechanismus. Das Modul ermittelt Teilschnittgrößen in Schubfeld, Steifen und Schweißnähten. Die Steifen werden jeweils in Druck- und Zugzone nachgewiesen und auf Schub- und Vergleichsspannung geprüft. Die Schweißnähte werden nach dem richtungsbezogenen Verfahren bemessen. Die Ergebnisse werden in einer übersichtlichen Grafik dargestellt, um Geometrie, Winkel und Schnittgrößen des Schubfeldes zuordnen zu können (Bild 7).

Bild 7. Schubfeld und Schnittgrößen

Momententragfähigkeit M_{j,Rd}

Beginnend mit der am weitesten vom Druckpunkt entfernt liegenden Schraubenreihe wird die Tragfähigkeit jeder Reihe $F_{tr,Rd}$ aus der Tragfähigkeit der schwächsten Komponente im Zugbereich bestimmt. Die jeweils zuletzt betrachtete Schraubenreihe kann aufgrund der Gleichgewichtsbedingungen auch durch die Tragfähigkeit der Komponenten im Druckbereich begrenzt sein.

Mit den Hebelarmen zu den einzelnen Schraubenreihen lässt sich die Biegetragfähigkeit $M_{i,Rd}$ wie folgt ermitteln:

$$M_{j,Rd} = \sum_{r} h_{r} \cdot F_{tr,Rd}$$
(15)
mit
$$h_{r} \qquad Abstand der Schraubenreihe rvom Druckpunkt
$$F_{tr,Rd} \qquad wirksame Grenzzugkraft derSchraubenreihe r auf Zugr \qquad Nummer der SchraubenreiheDie Nummerierung der Schraubenreihen be-ginnt mit der vom Druckpunkt am weitestenentfernt liegenden Schraubenreihe.$$$$

Anfangsrotationssteifigkeit S_{j,ini}

Die Rotationssteifigkeit eines Anschlusses kann anhand der Verformbarkeiten der einzelnen Grundkomponenten berechnet werden. Im Modul S680.de wird die Anfangsrotationssteifigkeit $S_{j,ini}$ nach DIN EN 1993-1-8, [1] ermittelt:

$$S_{j,ini} = \frac{E \cdot z_{eq}^2}{\frac{1}{k_{eq}}}$$
(16)
mit

$$z_{eq} \qquad \ddot{a}quivalenter Hebelarm$$

$$z_{eq} = \frac{\sum_r k_{eff,r} \cdot h_r^2}{\sum_r k_{eff,r} \cdot h_r}$$

$$k_{eq} \qquad \ddot{a}quivalenter Steifigkeitskoeffizient$$

$$k_{eq} = \frac{\sum_r k_{eff,r} \cdot h_r}{z_{eq}}$$

$$k_{eff,r} \qquad effektiver Steifigkeitskoeffizient für die
Schraubenreihe r unter Berücksichtigung der
Steifigkeitskoeffizienten k_i für die Kompo-
nenten i. nach DIN EN 1993-1-8. Tab. 6.11. [1]$$

Sofern die Normalkraft $N_{\rm Ed}$ im angeschlossenen Träger nicht mehr als 5 % der plastischen Beanspruchbarkeit $N_{\rm pl,Rd}$ des Querschnitts beträgt, kann die Rotationssteifigkeit $S_{\rm j}$ eines Trägerstoßes ausreichend genau für ein Moment $M_{\rm j,Ed}$, das kleiner als die Biegetragfähigkeit $M_{\rm j,Rd}$ des Anschlusses ist, nach Gleichung (16) berechnet werden.

Eine Steifigkeitsermittlung für eine Normalkraft $N_{\rm Ed}$ im gestoßenen Träger mit mehr als 5 % der plastischen Beanspruchbarkeit $N_{\rm pl,Rd}$ des Trägerquerschnitts erfordert eine genaue Abbildung der einzelnen Komponenten über ein Gesamtfedermodell. Anhand der Anfangsrotationssteifigkeit kann das Verformungsverhalten des Anschlusses in der Tragwerksplanung berücksichtigt und damit eine wirtschaftliche Konstruktion erzielt werden.

Ausgabe

Die Ausgabe ist nach der üblichen Gliederung aufgebaut und an der Struktur des Eingabekatalogs orientiert. Zu Beginn ist das "System" mit den Systemgrafiken zu sehen. Hierin wird der eingegebene Anschluss grafisch abgebildet und bemaßt.

Bild 8. Systemgrafiken

Der Maßstab der Grafiken und deren Anordnung können unter "Ausgabe" im Eingabekatalog bestimmt werden. Unterhalb der Grafik sind tabellarisch alle "Komponenten" aufgeführt und näher beschrieben. Nach dem "System" folgen die Schnittgrößen, die als charakteristische Schnittgrößen sowie als Bemessungsschnittgrößen ausgegeben werden. Hierfür werden für das Rahmeneck und im Detail für das Schubfeld gesonderte Grafiken zur Ausgabe der Schnittgrößen zur Verfügung gestellt. Unter "Mat./Querschnitt" sind wie gewohnt die Daten der verwendeten Materialien und Querschnitte der Anschlussbauteile und Verbindungsmittel detailliert aufgelistet. Es können auch alle Bauteile grafisch angezeigt werden. Das Kapitel "Nachweise" enthält in tabellarischer Form alle Nachweise der Komponentenmethode sowie die Sondernachweise für Schubfeld, Schrauben und Schweißnähte. Am Ende der Ausgabe werden in der "Zusammenfassung" die maßgebenden Ausnutzungsgrade der zuvor geführten Nachweise nochmals übersichtlich gelistet.

Dipl.-Ing. Marcel Lang mb AEC Software GmbH mb-news@mbaec.de

Literatur

- DIN EN 1993-1-8:2010-12 + NA: Eurocode 3: Bemessung und Konstruktion von Stahlbauten – Teil 1-8: Bemessung von Anschlüssen. Deutsche Fassung EN 1993-1-8: 2005 + AC:2009.
- [2] Stahlbau Kalender 2017, U.Kuhlmann, Ernst & Sohn-Verlag, Berlin, 2017.
- [3] Stahlbau-Praxis nach Eurocode 2 Band 2, G. Wagenknecht,3. Auflage, Beuth-Verlag, Berlin-Wien-Zürich, 2011.
- [4] Kretz, J.: Anschlüsse nach DIN EN 1993-1-8. Teil 1: Allgemeine Grundlagen zur Anschlussbemessung / Komponentenmethode. In mb-news 4/2017.
- [5] Kretz, J.: Anschlüsse nach DIN EN 1993-1-8. Teil 2: Grundlagen zu Anschlüssen mit H- und I-Querschnitten / Kenngröße Momententragfähigkeit. In mb-news 5/2017.
- [6] Kretz, J.: Anschlüsse nach DIN EN 1993-1-8. Teil 3: Grundlagen zu Anschlüssen mit H- und I-Querschnitten / Kenngrößen Rotationssteifigkeit und Rotationskapazität. In mb-news 3/2018.

Preise und Angebote

S680.de Stahl-Rahmenecke, Komponentenmethode – EC 3, DIN EN 1993-1-8 Leistungsbeschreibung siehe nebenstehenden Fachartikel	490,– EUR
BauStatik Ser-Paket bestehend aus 5 BauStatik-Modulen deutscher Norm nach Wahl*	990,– EUR
BauStatik 10er-Paket bestehend aus 10 BauStatik-Modulen deutscher Norm nach Wahl*	1.690,– EUR
* ausgenommen S012, S018, S030, S928, S141.de, S261.de, S410.de, S411.de, S414.de, S630.de, S853.de	
Es gelten unsere Allgemeinen Geschäftsbedingungen. Änderun	gen und Irrtümer

vorbehalten. Alle Preise zzgl. Versandkosten und MwSt. – Hardlock für Einzelplatzlizenz je Arbeitsplatz erforderlich (95,- EUR). Folgelizenz-/Netzwerkbedingungen auf Anfrage. – Stand: Mai 2018

Unterstützte Betriebssysteme: Windows 7 (64) / Windows 8 (64) / Windows 10 (64)